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Abstract -- Graphical simulation is a cost-effective 
solution for developing and testing robots and their control 
systems. The availability of various high-performance 
workstations makes these systems feasible in everyday 
practice. Simulation offers preliminary testing of systems 
before their actual realizations, and it provides a 
framework for developing new control and planning 
algorithms. On the other hand, these simulation systems 
have to have the capability of incorporating various 
knowledge-based system components, e.9. task planners, 
representation formalisms, etc. They also should have an 
appropriate user interface, which makes possible the 
creation and control of simulation models. 

ROBOSIM was developed jointly by MSFC and Vanderbilt 
University, first in a VAX environment. Recently, the 
system has been ported to an HP-9000 workstation equipped 
with an SRX graphics accelerator. The user interface of the 
system now contains a menu- and icon-based facility, as well 
as the original ROBOSIM language. The system is also 
coupled to a symbolic computing system based on Common Lisp, 
where knowledge-based functionalities are implemented. The 
knowledge-based layer uses various representation and 
reasoning facilities for programming and testing the control 
systems of robots. 
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Introduction 

Robots are becoming increasingly important in every 
area of industry. Along with an increase in robot 
sophistication and payload capability there is an increase 
in the possibility of damage to the robot and to the 
workcell, especially during the development of the system 
and the algorithms or programs that will drive the robot. 
Simulation is even more important for robotic systems 
designed to operate in space. These robots, which are 
desgned to operate in zero-g, can not be tested in full on 
the ground. While robot simulation programs have existed 
for a while, the advent of high-speed graphics workstations 
allows real-time graphical simulation at a fraction of the 
cost as in the past. 

ROBOSIM [1,2] was developed jointly between NASA and 
Vanderbilt University. ROBOSIM has been running on a DEC 
VAX 11/780 with the capability to use terminals with TEK4014 
graphics compatibility. Interfaces for Evans & Sutherland 
PS~XX, GTI Poly 2000, and Silicon Grahphics IRIS are 
supported also. 

ROBOSIM operates via an interpreted program that the 
user writes. The program consists of commands that create 
various solid and planar primitives that can be rotated and 
translated by other commands. In this way, the links of the 
robot are built up, with the relationships between the links 
following the Denavit-Hartenberg convention. ROBOSIM 
generates structures describing the physical structure, its 
kinematics, and its mass properties: With this information 
everything is known except for joint position, velocity, and 
torque limits, which are specified in the actual simulation. 
Using this information, all aspects of the simulation can be 
implemented, while reducing the possibility of data skewing, 
as the physical model, the kinematics, and the mass 
properties are calculated at the same time from the same 
program. All data is provided for collision detection, 
graphics display, and dynamics. 

This full implementation of ROBOSIM has been ported to 
a Hewlett-Packard 350SRx graphics workstation. Several 
additional features have been added to exploit the 
capabilities of this workstation, such as the 3D graphics 
editor. 
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Graphics Editor 

The capabilities of the workstation allow a much 
friendlier user-interface. X-Windows and the 3D graphics 
library (along with the special-purpose graphics hardware) 
provide the basis for a sophisticated means of designing 
robots. The editor utilizes menus and a mouse to provide 
simple methods to use the system. Also, a "box" of analog 
knobs allow the viewpoint to be changed, colors altered, and 
various other parameters concerning the graphic display to 
be set as desired. Although similar to some CAD systems, 
the editor is designed with ROBOSIM in mind. 

The editor uses object oriented methods in its 
operation. Different types of objects can be created, such 
as boxes, cylinders, and custom designed objects. The 
reference frames of the links are also defined as objects. 
After creation, objects can be rotated, translated, deleted, 
and resized. Also, the objects can be attached together. 
This attachment is hierarchical in that there is a parent 
object and a child object. Any'rotation or translation on a 
parent object propogates to any child object and its 
children as well. Once objects have been attached then a 
resizing operation on either will result in the relationship 
between them remaining constant. In this way complex, 
custom-designed, yet generic objects can be created. A l l  
that is necessary is to specify the dimensions of the 
components. This attachment allows more complex objects to 
be constructed without losing the ability to operate on the 
primitives, 

Once the robot link has been built up, the structures 
can be saved for later editing. However, this editor will 
also generate a ROBOSIM program. The editor goes through 
the hierarchy, propogating every operation down. This 
yields a primitive object and a set of translations and 
rotations. Once this is achieved it is a fairly 
straigtforward procedure to automatically generate the 
ROBOSIM code. In this way the editor does not need to 
concern itself with mass properties or kinematics, as this 
is automatically produced by the ROBOSIM object compiler. 

Object Compiler 

The object compiler takes the output of the graphical 
editor and generates all of the data about a link: the 
polygonal model, the kinematic model, and the inertial data. 
Figure 1 shows a session during the editor in which a link 
is built. Figure 2 is a listing of the ROBOSIM code 
generated by the editor. And Figure 3 is an outline of the 
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LOOK-FROM X=-150., Y=50., Z=lOO. 
LOOK-AT X=O., Y=O., Z=O. 
CLEAR 
STORE B 
F- JOINT-I 

TRANSLATE X=O.OOO, Y=O.OOO, Z=-43.333 
ADD B 
STORE B 

CLEAR 
R-JOINT-I+1 

TRANSLATE X=O.OOO, Y=O.OOO, 2-23.811 
ADD B 
STORE B 

CLEAR 
SPHERE R=15.000 

TRANSLATE X=O.OOO, Y=O.OOO, Z=10.239 
ADD B 
STORE B 

CLEAR 
CYLINDER R=10.000, H=30.000 

TRANSLATE x=o.ooo, Y=O.OOO, z=-ia.333 
ADD B 
STORE B 

CLEAR 
TRUNCATED-CONE RL=20.000, RU=15.000, H=10.000 

TRANSLATE X=O.OOO, Y=O.OOO, Z=-40.000 
ADD B 
STORE B 

CLEAR 
LOAD B 
STORE-LINK ROBOT.LOC 
VIEW 
END 

Figure 2. ROBOSIM code generated by editor 
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Row 

1 

2 

3 

7 

11 

15 

19 

20 

21 

NVEC+ 19 

THETA 
DZ 
DA 
ALPHA 
JA1 , JA2 

I AJNT-I+1 (4x4) I 
I AMAT (4x4) I 
I NVEC I UNUSED I UNUSED I UNUSED I 

Variable Definitions: 
= Denavit-Hartenberg parameter 
= Denavit-Hartenberg parameter 
= Denavit-Hartenberg parameter 
= Denavit-Hartenberg parameter 
= joint defined flag 

JTYPE-I,I+l = joint type - >  Revolute,Prismatic,Fixed 
AINERT = generalized link inertia 
AJNT-I,I+1 = transforms of input and output frames 
AMAT _ 
NVEC - 
Xi , Yi , Zi 
Di - move or draw vector 

link's A-matrix 
number of vectors in list 
x,y, and z component of vector 

- 
- 
- - 
- 

Figure 3 .  Data Structure of Link 
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data structure generated by ROBOSIM. 

S imu 1 at or 

The basis of the simulator is a library of C routines. 
These routines operate directly on the ROBOSIM structures. 
This allows the specifics to be hidden from the user, unless 
direct manipulation is required by the simulation. With 
these routines, one can implement fast, very specific 
simulations that are written in C and linked with the 
simulation library. However, one can also implement an 
interactive, general-purpose simulation in those cases where 
real-time simulation is not required. 

These routines allow various robots, environments, and 
objects to be loaded separately and combined in any 
configuration. They allow commands similar to many robot 
programming languages to drive the robots. Collision 
detection can be turned on or off, and forces and torques 
can be returned to the simulation or used for control of the 
robot. Straight-line motion is included as well as a 
facility to move along any parametrically defined function. 
The joint angles can also be returned to the simulation for 
its use. 

Although not included at this time, translators for 
many robot programming languages will be available in order 
to download developed programs directly to the physical 
robot. 

Knowledge Representation Facilities 

It is important to look at the ideas presented above, 
along with areas of future expansion, from the point of view 
of knowledge representation. Different choices in 
representation can result in changes in efficiency, 
flexibility, system requirements, and user-friendliness. 

The techniques of Knowledge Representation (KR, for 
short) have been developed in the framework of Artificial 
Intelligence research. For engineering purposes KR 
techniques offer enhanced capabilities for modeling, where 
in addition to traditional numerical models, various 
symbolic models can also be used. The latter might include 
various declarative languages which represent technical 
concepts and entities [ 3 1 .  
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This idea is applied in the robot simulation system as 
follows. Robot modelling and programming are supported by 
various declarative languages, which supply a 
knowledge-based description of (1) the robot, (2) its 
control system, ( 3 )  its environment, and (4) its task to be 
performed. Currently, these declarative languages are 
realized in a Lisp framework. 

The geometric objects in robot modelling together 
constitute a graphic model of a robot or objects from its 
environment, and they can be used for various other 
considerations dependent on the objects, e.9. collision 
detection, dynamics, and task planning. For this 
application a declarative language has been defined, which 
supports the hierarchical representation of geometrical 
objects by using object--oriented programming techniques, as 
discussed previously. 

The computations for the forward and inverse dynamics 
can be synthesized from the geometrical and physical model. 
This happens as follows: from the declarations describing 
the geometry and the physical properties a dataflow graph is 
synthesized, which represents the flow of computations 
needed to solve the dynamics problem. This graph is 
executed on the Multigraph Architecture ( M A )  [ 4 , 5 ] ,  which 
makes possible the integration of symbolic and numeric 
computing in such a way, that the structure of a complex 
computation is represented in a declarative framework, while 
the computational primitives can be represented in terms of 
fast and efficient numerical algorithms. 

Joint constraints and geometrical properties together 
are used for collision detection, where the detection 
algorithm also utilizes the representation schemes mentioned 
above. 

The simulation of a robot system generates numerical 
and graphical output: numerical output contains information 
about joint angles, forces and torques, etc., while 
graphical output provides visual feedback for the designer. 
To control a robot which has been modelled using the 
facilities described above, one can create robot controller 
structures using a similar knowledge representation scheme. 
Here, again, a declarative language is used, which lets the 
designer describe a control system in terms of signal 
processing blocks, which implement various functionalities 
of the control system. This declarative language is also 
supported by a graphical editing technique, which uses icons 
to specify the blocks, and they can be connected to form a 
signal processing graph. The resulting declarations are 
interpreted to generate the running signal processing system 
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using the Multigraph Architecture. 

The tasks to be performed are represented in 
declarative terms also. Using hierarchical decomposition, 
robot control sequences are represented in symbolic form, 
from which a task planner synthesizes the actual sequence of 
control actions needed to accomplish a certain goal. The 
hierarchical planner generates a chain of objects, which 
represent the steps to be performed. Each such step is 
linked to a low-level control scheme which implements that 
step. Now if the step has successfully been executed (i.e. 
the low-level control scheme has not signalled an error) the 
execution proceeds, while if there were a problem, the 
execution (1) might go along either a new path, or (2) a 
completely new sequence is synthesized together with its 
low-level control blocks. This dynamic replanning might 
influence the computational model of control, dynamically 
changing the structure of the control system. One example 
might be as follows: if the collision detection scheme 
signals an error to the controller system, that event might 
initiate the restarting of the task planner to re-generate 
or structurally modify the step sequence and/or its 
associated controller. This flexible way of representing 
tasks, task steps and low-level controllers was made 
possible by using the integrated computational model of the 
MA. 

Conclusions 

The need for competent, comprehensive robot simulators 
h a s  been well established. In order to provide adequate 
simulation capability, the system must allow graphical, as 
well as dynamic, simulation. The new generation of graphics 
workstations provide for extremely fast graphics output, 
while freeing the main processor for kinematic and dynamic 
calculations. However, mere number crunching is not enough 
to create a better simulator. Symbolic planners and other 
such AI programs are necessary in order to fully meet the 
demanding requirements that are being asked for. 
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